Compact and Low-Power Neural Spike Compression Using Undercomplete Autoencoders

August 22, 2019

Jameson Thies, Amirhossein Alimohammad

Implantable microsystems that collect and transmit neural data are becoming very useful entities in the field of neuroscience. Limited by high data rates, on-chip compression is often required to transmit the recorded data without causing power dissipation at levels that would damage sensitive brain tissue. This paper presents a data compression system designed for brain–computer interfaces (BCIs) based on undercomplete autoencoders. To the best of our knowledge, the proposed system is the first to achieve an average spike reconstruction quality of 14-dB signal-to-noise-and-distortion ratio (SNDR) at a 32× compression ratio (CR), 18-dB SNDR at a 16× CR, 22-dB SNDR at an 8× CR, and 35-dB SNDR at a 4× CR of neural spikes. The spike detection and autoencoder-based compression modules are designed and implemented in a standard 45-nm CMOS process. The post-synthesis simulation results report that the compression module consumes between 1.4 and 222.5 μW of power per channel and takes between 0.018 and 0.082mm 2 of silicon area, depending on the desired CR and number of channels.

READ FULL ARTICLE ON IEEE XPLORE

Login

New Here? Sign Up

Looking for increased exposure in the field of biomedical engineering? EMBS offers journals, conferences and a community for biomedical engineers. Membership includes PULSE Magazine.

Join EMBS