Associate Editors

Panagiotis Artemiadis, Ph.D.
Arizona State University, Tempe, AZ, USA
panagiotis.artemiadis@asu.edu
Phone: (480) 965-4182, Fax: (480) 727-9321
Personal: http://www.public.asu.edu/~partemia/
Lab: http://horc.engineering.asu.edu

Dr. Artemiadis’ primary research interests have been in robotics and autonomous systems that interact with humans. The goals of his research have been to improve the quality of life by developing and controlling robotic devices that physically and cognitively interact and collaborate with humans. This interaction can be with devices that assist and augment human capabilities, as well as provide motor rehabilitation therapy to impaired individuals. In order to accomplish this, Dr. Artemiadis’ research has been focusing on answering important questions regarding the symbiosis of humans and robots in environments that involve physical and cognitive interaction.


Mahnaz Arvaneh, Ph.D.
Lecturer
Department of Automatic Control and Systems Engineering
The University of Sheffield
Mappin Street, Sheffield, S1 3JD
m.arvaneh@sheffield.ac.uk
Phone: +44 (0)114 222 5649

Dr Arvaneh’s research interest includes brain-computer interface, assistive technology, prosthetic control, cognitive processes and their clinical applications. She applies her expertise in adaptive signal processing and machine learning to accurately detect different biomarkers within brain and other physiological signals. She has incorporated these biomarkers in a range of robotic stroke rehabilitation, brain monitoring and cognitive performance enhancement experiments both in the laboratory and clinical settings. Dr Arvaneh is the head of Physiological Signals and Systems laboratory in the Automatic Control and Systems Engineering department at University of Sheffield, where analytical and experimental techniques are combined to develop improved therapeutic, assistive, adaptive and rehabilitative technologies for a variety of conditions.


Fabio Babiloni, Ph.D.
Associate Professor of Physiology
Associate Editor of Clinical Neurophysiology
Associate Editor of International Journal of Bioelectromagnetism
University of Rome “La Sapienza”, P.le A. Moro 500185, Rome, Italy
fabio.babiloni@uniroma1.it
Phone: +39-06-49910317
Fax: +39-06-49910917

Dr. Babiloni’s research interests include high resolution EEG, multimodal integration of EEG, MEG and fMRI data, and brain computer interface. Dr. Fabio Babiloni investigated the techniques needed to improve greatly the spatial details of the brain activity as obtained by scalp EEG recordings. The original scientific contributions of dr. Fabio Babiloni in the field of the high resolution EEG are related to the study of methods to improve greatly the spatial distribution of the acquired EEG signals, usually blurred and distorted by the action of the head as volume conductor. Dr. Babiloni also studies possible methods for the multimodal integration of data from different brain imaging modalities. Another area of interest is the study of possible methods for the estimation of cortical connectivity, i.e. the estimation of how the single cortical areas can be functionally linked one to the others during particular time period of a task. Dr. Babiloni investigates this issue with the use of several methods, some of them only used in the fMRI field and now adapted by dr. Babiloni also in the field of EEG and MEG. More recently, Dr. Babiloni has initiated the study of possible methods to recognize imagined mental activity by using the non invasive EEG electrodes.


Thor F. Besier PhD
Associate Professor, Auckland Bioengineering Institute & Department of Engineering Science
University of Auckland, New Zealand
t.besier@auckland.ac.nz
https://unidirectory.auckland.ac.nz/profile/tbes006
http://www.abi.auckland.ac.nz/en/about/our-research/musculoskeletal-modelling.html

Thor Besier is an Associate Professor at the Auckland Bioengineering Institute and has a joint appointment with the Department of Engineering Science at the University of Auckland, New Zealand. Thor’s research combines medical imaging with computational modelling to understand mechanisms of musculoskeletal injury and disease.  He has published >95 peer-reviewed journal papers in this area and has received grant funding from the NIH, NSF, FDA, Australian ARC and NHMRC and NZ Marsden Fund. Thor’s current projects focus on developing gait retraining technology for osteoarthritis and neurological disorders as well as open source modelling tools to generate musculoskeletal models for in silico testing of medical devices. Prior to joining the Auckland Bioengineering Institute in 2011, he spent 8 years at Stanford University as a faculty member in the Department of Orthopaedics and a post-doctoral research fellow in Bioengineering. Thor completed his Ph.D. in 2000 at the University of Western Australia in the field of Biomechanics.


Anastasios Bezerianos, Ph.D.
Dept. of Medical Physics, School of Medicine
University of Patras, GR 26500 PATRAS, Greece
Phone:+30 -2610-996115
Fax:+30-2610-992496
bezer@upatras.gr
http://biosignal.med.upatras.gr

Prof. A. G. Bezerianos heads the Biosignal Processing Group, one of the five groups of Medical Physics Department at the Medical School in Patras, Greece. The group is engaged in research and teaching in both undergraduate and postgraduate levels and participates in national, European Union and international research and development projects. His research interests are analysis of biological time series, information measures of brain injury, modeling biological systems, and bioinformatics.


Anna M. Bianchi, MS
Full professor of Biomedical Engineering
Fellow EAMBES
Politecnico di Milano, Department of Electronics, Information and Bioengineering
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Phone: +39 02 2399 3342
Annamaria.bianchi@polimi.it

Her research interests are mainly related to the processing of biomedical signals and images and to the development of innovative methodologies for feature extraction and for enhancement of the information content and the formulation of new interpretative models to be applied both in physiological studies and in clinics.

Applications are in the analysis of signals and images from the central nervous system, including EEG, sEEG, fMRI, fNIRS, MRI for a better understanding of the physiological mechanisms related to cognitive processes, brain plasticity, rehabilitation, and for the characterization of pathological conditions, such as epilepsia, cerebral palsy, traumatic brain injury. Further studies of peripheral signals, heart rate, blood pressure, respiration, are focused on cardiovascular modelling and emotion recognition.

The methodological effort focuses mainly on the development of time-frequency analysis; parametric recursive identification; multi-variable parametric modeling; non-linear feature extraction; linear and non-linear synchronization of biomedical series; data, signal and image fusion.


Tim Bruns, Ph.D.
Department of Biomedical Engineering & Biointerfaces Institute
University of Michigan, Ann Arbor, MI, USA
bruns@umich.edu
http://pneurolab.com

Dr. Bruns leads the Peripheral Neural Engineering and Urodynamics Lab at the University of Michigan. The pNEURO Lab develops interfaces with the peripheral nervous system to restore function and examine systems-level neurophysiology. The lab has specific focuses in autonomic organ control, such as for bladder and sexual dysfunction, and in interfaces with dorsal root ganglia. Techniques in the lab include using microelectrodes for real-time decoding and closed-loop control, anatomical modeling, and behavioral neuromodulation. The lab works with several animal models and also performs clinical research.


Rory A. Cooper, Ph.D.
Distinguished Professor and FISA/PVA Chairman
Director, Human Engineering Research Laboratories
Rehabilitation Science and Technology
School of Health and Rehabilitation Sciences
University of Pittsburgh
5044 Forbes Tower, Pittsburgh, PA 15260
Office: (412) 383-6590
Lab: (412) 365-4850
rcooper@pitt.edu

Dr. Cooper’s research interests include Rehabilitation engineering, robotics & mechatronics, quality of life technology design, assessment and technology transfer, biomechanics.


Max Donelan, PhD
Professor
Department of Biomedical Physiology & Kinesiology
Simon Fraser University, Burnaby, BC, Canada
mdonelan@sfu.ca
www.sfu.ca/locomotionlab

Max Donelan is an Professor of Biomedical Physiology & Kinesiology at Simon Fraser University in Vancouver, British Columbia. His research integrates biomechanical, neurophysiological, and energetic approaches to uncover fundamental principles of biological movement, and the application of these principles to improve lives. For TNSRE, he is particularly interested in technological advances that that leverage fundamental insight into human physiology. His expertise includes neuromechanics, biomechanics, energetics, motor control, locomotion, wearable technology, exoskeletons, and energy harvesting.


Deanna H. Gates, Ph.D.
Assistant Professor of Movement Science, Biomedical Engineering and Robotics
University of Michigan, Ann Arbor, MI, USA
gatesd@umich.edu
Phone: +1-734-647-2698
http://rehab-biomech-lab.kines.umich.edu/

Dr. Gates directs the Rehabilitation Biomechanics Laboratory at the University of Michigan. The lab focuses on 1) determining biomechanical and motor control strategies for repetitive human movements such as walking and reaching, 2) assessing biomechanical adaptations to prosthesis and orthosis use, 3) outcomes assessment of devices and rehabilitation, and 4) optimization of prosthetic control.


Walter Herzog, Ph.D.
Director Human Performance Lab
Canada Research Chair in Molecular and Cellular Biomechanics
Professor, Faculty of Kinesiology, Engineering, Medicine and Veterinary Medicine
Phone: 403-220-8525
Fax: 403-284-3553
walter@kin.ucalgary.ca
http://contacts.ucalgary.ca/info/kn/profiles/196-1425

Dr. Herzog’s research is focused on the neuro-biomechanics of the musculoskeletal system. Expertise is in the area of growth, healing, and adaptation of soft (ligament, tendon, muscle, and articular cartilage) and hard (bone tissues). Within this area we work experimentally and theoretically on the molecular/cellular, in vitro, in situ, and in vivo level. It also includes cell manipulation and mechanical testing as well as finite element modeling, continuum mechanics, simulations and theories of growth and adaptation. Current research interests of his laboratory may be divided into three basic areas: (i) muscle mechanics, (ii) joint injuries and diseases; and (iii) clinical rehabilitation. The long term goals in muscle mechanics research are to understand the molecular mechanisms of contraction, and to determine the functional role of muscles working in vivo. The focus of the joint biomechanics research is in understanding the in vivo mechanical loading of joints during everyday movements and the adaptive/degenerative responses that this loading might produce. The clinical rehabilitation research is primarily focused on patients with neuro-musculoskeletal injuries and diseases and effective (conservative) treatment strategies.


He (Helen) Huang, Ph.D.
Professor, NCSU/UNC Department of Biomedical Engineering
Director, NCSU/UNC Closed-Loop Engineering for Advanced Rehabilitation (CLEAR) Core
North Carolina State University and University of North Carolina at Chapel Hill
hhuang11@ncsu.edu

Dr. Huang is a Professor of Biomedical Engineering in the Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill (UNC) and North Carolina State University (NCSU) and the Director of the NCSU/UNC Closed-Loop Engineering for Advanced Rehabilitation (CLEAR) Core. Dr. Huang’s research interest lies in neural-machine interfaces for prostheses and exoskeletons, wearer-robot interaction, adaptive and optimal control of wearable robots, and human movement control. She pioneered EMG-based neural interface for robotic prosthetic legs. This work has won her the Delsys Prize in 2008. Her lab also invented novel control for multifunctional prosthetic arms based on EMG-driven musculoskeletal models. Her current research focuses on (1) optimal adaptive control of wearable robots with human-in-the-loop, (2) fault-tolerance in wearer-robot interaction, and (3) shared control of artificial limbs. She is a senior member of IEEE and member of the Society for Neuroscience and BMES.


Ernest N. Kamavuako, Ph.D.
Senior Lecturer in Engineering
Centre for Robotics Research (CORE)
Department of Informatics
Faculty of Natural & Mathematical Sciences
King’s College London
Strand Campus, Bush House, Level 5, (N)5.03, 30 Aldwych, London, WC2B 4BG, United Kingdom
Tel: +44 207 848 8666
ernest.kamavuako@kcl.ac.uk

Ernest Kamavuako is a Senior Lecturer in the department of Informatics, King’s College London, United Kingdom. Between 2014 and 2017, he was an Associate Professor in the Department of Health Science and Technology, Aalborg University, Denmark with excellent teaching and supervision skills. In 2015, he was named teacher of the year by the students of study board for health technology and Sport science.  From 2007 to 2008, he was a Research Scholar in the Biomedical Department, IUPUI, Indianapolis, USA. From 2012 to 2013, he was a Visiting Postdoctoral Fellow at the Institute of Biomedical Engineering, University of New Brunswick, Canada. He has good publication record with main research interests related to the use of invasive recordings in the control of upper limb prostheses. Other research interests include muscle recovery functions following electrical stimulation, applied signal processing and the application of near-infrared spectroscopy and EEG for brain–computer interface and speech processing. ENK is an Associate Editor for IEEE transactions on Neural Systems and Rehabilitation Engineering.  In January 2017, ENK was appointed Adjunct Professor in the Department of electrical and computer engineering at the University of New Brunswick. In 2017 he was working as academic visitor in the department of bioengineering, Imperial College London, United Kingdom.


Tatiana Kameneva
Vice-Chancellor’s Women in STEM Fellow
Senior Lecturer
Faculty of Science, Engineering and Technology
Swinburne University of Technology, Australia
Tel: +61 3 9214 4697
tkameneva@swin.edu.au

Dr Kameneva’s research interests include visual neuroscience and computational modelling; her research combines engineering tools and mathematical methods to solve open problems in biology and medicine. Dr Kameneva has expertise in control theory tools and their applications in life sciences and neuroprosthetic implants. Dr Kameneva contributes to the understanding of neural information processing in response to stimuli; she studies how electrical and optical stimulation affects neural activations and works on the development of new stimulation methods that can be used across a broad range of medical bionics applications.


Derek Kamper, Ph.D.
Associate Professor, NCSU/UNC Joint Department of Biomedical Engineering
North Carolina State University
University of North Carolina at Chapel Hill
4420 Engineering Building III, Raleigh, NC
Tel: (919) 515-4411
dgkamper@ncsu.edu

Dr. Kamper’s research interests focus on the neuromechanics of the upper extremity and the restoration of upper extremity function following neurological injury. Studies of biomechanics and motor control are undertaken with the goal of identifying impairment mechanisms in individuals following neurological damage. Knowledge of these mechanisms guides the development of novel interventions, including virtual reality and soft exoskeletons.


Emily A. Keshner, PT EdD
Professor, Dept. of Physical Therapy
Director, Virtual Environment and Postural Organization (VEPO) Lab
Past-President, ISPGR and ISVR
Temple University, Philadelphia, PA, USA
ekeshner@temple.edu

Dr. Emily A. Keshner is a Professor in the Department of Physical Therapy at Temple University. She is Director of the Virtual Environment and Postural Orientation (VEPO) Laboratory at Temple University, which was developed for experimental and clinical testing of postural behavior within a simulated visual environment where she collaborates with clinicians, computer scientists, and bioengineers. Her current research focuses on how the CNS computes conflicting sensory feedback demands to organize effective postural behavior. Studies are performed with multiple populations including healthy adults and those with balance problems and central nervous system disorders, such as vestibular deficit, stroke and cerebral palsy, to understand how control parameters change with age and dysfunction. The goal of this research is to develop treatment interventions that will effectively reduce instability and falls in aging and clinical populations.


Kazuo Kiguchi, Ph.D.
Professor, Faculty of Engineering
Kyushu University, Fukuoka, Japan
kiguchi@mech.kyushu-u.ac.jp
Phone: +81-92-802-3236
Fax: +81-92-802-0001
http://system.mech.kyushu-u.ac.jp/index.html

Dr. Kiguchi directs System Engineering Laboratory in Department of Mechanical Engineering at Kyushu University. Dr. Kiguchi’s research interests include human assist robots, rehabilitation robots, human-robot interface, EEG analysis, EMG analysis, human motion simulators, and surgery simulators.


Glenn K. Klute, PhD
Research Career Scientist, Dept. of Veterans Affairs
Affiliate Professor, Dept. of Mechanical Engineering, University of Washington
gklute@u.washington.edu

Dr. Klute’s research aims to enhance the mobility of individuals with lower limb amputation. His interests in biomechanics and robotics include: development of prosthetic lower limbs to facilitate the complex maneuvering gait that occurs in everyday life, terrain adapting prostheses that improve balance, and prostheses that remain secure despite vigorous activity in demanding environments.


Li-Wei (Leo) Ko, Ph.D.
Associate Professor of Institute of Bioinformatics and Systems Biology
National Chiao Tung University, 30010, Hsinchu, Taiwan
lwko@mail.nctu.edu.tw
Phone: +886-3-5712121#56950
http://life.nctu.edu.tw/~lwko/index.php?lang=en

Dr. Ko is an Associate Professor in Institute of Bioinformatics and Systems Biology in National Chiao Tung University, Hsinchu, Taiwan. Dr. Ko is also affiliated with Institute of Biomedical Engineering, and Brain Research Center in NCTU, Taiwan. Dr, Ko is also the visiting scholar in Institute for Neural Computation (INC) in University of California, San Diego (UCSD). Dr. Ko leads Neural Engineering Laboratory in NCTU and primary research interests are focusing on neural engineering related research, especially in brain computer interface (BCI), real-world neuroimaging (RWN), EEG-fMRI simultaneous recording, functional near-infrared spectroscopy(fNIRS), and neural computation in the neurological diseases such as neural rehabilitation, migraine, and sleep disorders. In academic service, Dr. Ko was the Associate Editors of IEEE Transactions on Neural Networks and Learning Systems (Impact Factor: 6.108, Rank: 3/104, of computer science, theory and methods) in IEEE Computational Intelligence Society (CIS) from 2010-2015 and served as the committee members in neural networks and fuzzy systems technical committees.


Chandramouli Krishnan, P.T., Ph.D.
Assistant Professor of Physical Medicine & Rehabilitation, Biomedical Engineering, Kinesiology, and Robotics Institute
University of Michigan, Ann Arbor, MI, USA
mouli@umich.edu
Phone: +1-734-936-4031
http://neurro-lab.engin.umich.edu/

Professor Krishnan directs the Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab) at the University of Michigan. He is a physical therapist by background and has vast clinical experience both in inpatient and outpatient rehabilitation. He received his PhD in Physical Therapy & Rehabilitation Science from the University of Iowa in 2009 and completed a 3-year postdoctoral fellowship in Robotics and Noninvasive Brain Stimulation at the Rehabilitation Institute of Chicago and Northwestern University. His research involves both mechanistic and interventional studies to facilitate our current understanding of neuromuscular function and regulation in the context of movement control and neuromuscular plasticity. He has a special interest in developing and testing low-cost technologies for the assessment and treatment of neurological and orthopedic conditions.


Dinesh Kant Kumar, Ph.D.
Associate Professor
Leader of Biosignals
RMIT University
124, Latrobe Street, Melbourne 3000, VICTORIA, AUSTRALIA
dinesh@rmit.edu.au
Phone: +61 3 9925 1954
http://www.set.rmit.edu.au/~e06227/
http://rmit.org.au/browse;ID=1j0eosr7hqo7z

Dr. Dinesh Kant Kumar, PhD in Biosignals, with focus on cerebral palsy, is the founder of the biosignals laboratory at RMIT University, Australia. He is an academic with over 250 publications and 7 patents, and an inventor with a start-up in the space of signal classification. He chairs the Biosignal conference in Brazil, and has received various national and international awards and scholarships for promoting biosignals research in Australia, Europe and Latin America.


Tania Lam, PhD
Professor of Kinesology
University of British Columbia
Phone:604–827–3165
Email:tania.lam@ubc.ca
Lab Website: http://blogs.ubc.ca/lamlab/
Office Address:
ICORD, Blusson Spinal Cord Centre
818 West 10th Ave
Vancouver, BC V5Z 1M9

The overall goal of the research done by Dr. Lam is to advance our understanding of the neural control of human walking and the mechanisms involved in adapting walking to environmental demands. This basic understanding of the human locomotor system will, in turn, inform our efforts in the development and advancement of gait rehabilitation interventions for people who had a neurological injury.


Silvestro Micera, Ph.D.
Assistant Professor of BioRobotics
ARTS and CRIM Labs
Scuola Superiore Sant’Anna, Pisa, Italy
Head of the Neuroprosthesis Control Group
Institute for Automation
Swiss Federal Institute of Technology, Zurich, Switzerland
micera@sssup.it

Dr. Micera’s research interests include the development of hybrid neuroprosthetic systems (interfacing the central and peripheral nervous systems with artificial systems) and of mechatronic and robotic systems for function and assessment restoration in disabled and elderly persons.


Pedram Mohseni, Ph.D.
Professor
Case Western Reserve University
Electrical Engineering & Computer Science Department
Biomedical Engineering Department
Glennan Building, Room 517-B
2123 Martin Luther King, Kr. Drive, Cleveland, OH 44106-7071
Tel: (216) 368-5263
Fax: (216) 368-6888
pedram.mohseni@case.edu
http://www.mohsenilab-cwru.org

Prof. Pedram Mohseni has directed the BioMicroSystems Laboratory in the Electrical Engineering and Computer Science Department at Case Western Reserve University since 2005. The research activities of the laboratory lie in the fields of biomicrosystems, implantable neuroprostheses, wireless brain-machine interfaces, microelectronics for neural engineering, and wireless integrated sensing/actuating systems. In particular, Prof. Mohseni’s research aims to employ engineering techniques to investigate the function and manipulate the behavior of the nervous system in both electrical and chemical paradigms, with the ultimate goal of enabling the investigation of brain-behavior relationships in neurobiology and restoring human function via direct interactions between the nervous system and state-of-the-art engineered devices.


Karen Moxon, Ph.D.
Professor of Biomedical Engineering and Mechanical and Aerospace Engineering
Center for Neuroscience, University of California, Davis CA, USA
moxon@ucdavis.edu
Phone: 530-752-8156
https://bme.ucdavis.edu/people/departmental-faculty/karen-moxon/

Dr. Moxon is Professor in the departments of Biomedical Engineering and Mechanical and Aerospace Engineering as well as a member of the Center for Neuroscience at the University of California, Davis. Professor Moxon received her BS from the University of Michigan in Chemical Engineering and her PhD from the University of Colorado in Aerospace Engineering. Her research examines how neuronal circuits encode information and the impact of injury and disease on neural encoding. She has developed new technologies to further this area of research, obtaining two patents with four patents pending. She is an elected fellow of the American Institute for Medical and Biological Engineers and the American Association for the Advancement of Science.


Volkan Patoglu, Ph.D.
Associate Professor, Mechatronics Engineering
Sabanci University,
Istanbul, Turkey
vpatoglu@sabanciuniv.edu
Phone: +90-216-4839604
Personal: http://myweb.sabanciuniv.edu/vpatoglu/
Labs: http://hmi.sabanciuniv.edu/ and http://cogrobo.sabanciuniv.edu/

Dr. Patoglu’s research is in the area of physical human-robot interaction. His research focuses on optimal design and control of force-feedback robotic systems (e.g., rehabilitation robots, exoskeletons, prostheses, surgical robots) under the constraints imposed by human biomechanics and sensorimotor control. His studies extend to cognitive robotics.


Carolynn Patten, PT, PhD, FAPTA
Professor
University of Florida Department of Physical Therapy
Box 100154, UFHSC
Gainesville, FL 32610-0154
Phone: (352) 376-1611 x4160
patten@phhp.ufl.edu

Carolynn Patten, Ph.D., PT is a Professor in the Department of Physical Therapy at the University of Florida and a member of the Graduate Faculty in the Rehabilitation Science Doctoral Program (College of Public Health and Health Professions). Dr. Patten is a senior investigator with the VA Brain Rehabilitation Research Center where she holds Research Career Scientist status. In 2016, Dr. Patten was named as a Catherine Worthingham Fellow of the American Physical Therapy Association, the highest honor among APTA’s membership. Dr. Patten’s primary research interests involve neurophysiological and biomechanical approaches to understand the neural control of movement, mechanisms of disordered motor control in neuropathological conditions, and the capacity for motor recovery in adults following central nervous system injury. Her translational neuroscience research program uses a combination of techniques including transcranial magnetic stimulation (TMS), neurophysiological methods (EMG, motor unit recordings, reflex probes), neuroimaging and human performance. As a result, her research crosses disciplines including motor control, physiology, biomechanics, clinical medicine, rehabilitation and bioengineering. Dr. Patten’s research has been supported by awards from the: Department of Veterans Affairs, National Institutes of Health, Whitaker Foundation, Brooks Research Endowment and Foundation for Physical Therapy. Her current projects involve: 1) investigation of novel approaches (i.e., rTMS (repetitive transcranial magnetic stimulation), TDCS (transcranial direct current stimulation), motor priming, robotics) to reverse central neural inhibition and promote behavioral motor recovery following stroke; 2) identification of neurobehavioral characteristics of therapeutic responders and non-responders; 3) development of customized therapeutic interventions using computational modeling. Dr. Patten is cross-appointed in the Departments of Applied Physiology and Kinesiology (College of Health and Human Performance) and Neurology (College of Medicine). Her teaching responsibilities include Translational Neuroscience Research.


Philip Requejo, PhD
Director, Rehabilitation Engineering Department
Associate Director of the Pathokinesiology Laboratory at Rancho Los Amigos National Rehabilitation Center
prequejo@ranchoresearch.org

Dr. Philip Requejo is the Director of the Rehabilitation Engineering Department and Associate Director of the Pathokinesiology Laboratory at Rancho Los Amigos National Rehabilitation Center. He serves as a faculty member at the University of Southern California in the Departments of Biomedical Engineering, Human and Evolutionary Biology, and Biokinesiology and Physical Therapy. He also is the Director of Rehabilitation Engineering Department and Co-Director of the RERC on Technologies for Successful Aging with Disability at the Model Systems Knowledge Translation Center (MSKTC). The MSKTC is a national center that helps facilitate the knowledge translation process to make research meaningful to those with Spinal Cord Injury (SCI), Traumatic Brain Injury (TBI) and Burn Injury (Burn). He received his undergraduate degree in Electrical Engineering and PhD degree in Kinesiology from the University of Southern California. He is a faculty in the Department of Biomedical Engineering and Department of Kinesiology, and Department of Biokinesiology and Physical Therapy at USC. His research primarily falls into several broad areas of rehabilitation engineering and biomechanics research; focusing on the design, analysis, and implementation of technologies to preserve and enhance mobility in those with spinal cord injury- particularly focusing on the biomechanics of the weight-bearing shoulder to prevent and treat shoulder pain.


José L. Pons Rovira, Ph.D.
Spanish Council for Scientific Research, Madrid, Spain
jose.pons@csic.es
Tel. +34 91 5854750 (ext.4712)
http://www.neuralrehabilitation.org/en/?page_id=129&id=5

Prof. J.L. Pons’ work centers in the areas of rehabilitation robotics, new actuators, and control technologies. His work with the Spanish Council for Scientific Research involves participating in and leading national, European Union and international research and development initiatives to leverage technology to improve the lives of people with disabilities. His research group’s main efforts focus on developing methods and technologies that increase understanding of and control over human biological systems and their interaction with the environment.


Erik Scheme, Ph.D., P.Eng
University of New Brunswick, Fredericton, Canada
escheme@unb.ca
Phone: 1 506 458 7029
http://www.ece.unb.ca/escheme/

Dr. Scheme holds the NB Innovation Research Chair in Medical Devices and Technologies, the charge of which is to grow Industry-Academia partnerships, and to build and strengthen collaborations among industry, researchers and clinicians. His research interests include: health diagnostics and predictive analytics, biological signal processing and control, rehabilitation engineering, and human machine interfaces.


Alfred C. Schouten, Ph.D.
Associate Professor, Delft University of Technology
Faculty of Mechanical, Maritime and Materials Engineering, Department of Biomechanical Engineering, Delft, the Netherlands
University of Twente, Faculty of Engineering Technology, department of Biomechanical Engineering, Enschede, the Netherlands
a.c.schouten@tudelft.nl
http://www.3me.tudelft.nl/nmc

Dr. Alfred C. Schouten is an associate professor at the Delft University of Technology and the University of Twente. Dr. Schouten’s research interests include neuromuscular control, neuromuscular modeling, EEG analysis, haptic manipulators, system identification, and neurorehabilitation.


Jon Sensinger, Ph.D.
University of New Brunswick, Fredericton, Canada
j.sensinger@unb.ca
1-506-458-7094
http://www.ece.unb.ca/jsensing/index.html

Dr. Sensinger’s current research efforts are focused on improving the control of prostheses, using computational motor control approaches in upper-limb prostheses and a variety of control strategies for lower-limb prostheses and exoskeletons. Dr. Sensinger is a co-founder and partner of Coapt LLC, a company providing pattern recognition controllers that integrate with existing prosthetic devices.


Peter B. Shull, Ph.D.
Shanghai Jiao Tong University, Shanghai, China
pshull@sjtu.edu.cn
wearablesystems.org

Dr. Shull’s research interests include human performance measurement and analysis, wearable sensors, biomechanics of locomotion, and machine learning. His laboratory develops wearable systems to explore principles of human movement and movement modification. His group combines robotic, haptic, and biomechanics principles to create unique sensors, real-time models, sensor fusion algorithms, and novel feedback devices. They focus on human movement in laboratories, in clinics, and in natural environments such as a home or office. Target applications are in medicine such as osteoarthritis and stroke, and in athletics such as basketball and running.


Cara E. Stepp, Ph.D.
Departments of Speech, Language, & Hearing Sciences, Biomedical Engineering, and Otolaryngology – Head & Neck Surgery, Boston University
cstepp@bu.edu
www.stepplab.com

Dr. Stepp directs the STEPP LAB for Sensorimotor Rehabilitation Engineering at Boston University. Dr. Stepp’s research uses engineering tools to improve the assessment, rehabilitation, and augmentation of function in individuals with sensorimotor disorders of voice and speech. Her work utilizes various biosignals, including acoustics, kinematics of speech articulators and respiration, laryngeal imaging, and surface electromyography. Across various patient populations, Dr. Stepp’s work focuses on the interaction between sensory function (somatosensory, auditory, and visual) and production in communication.


Lotte N. S. Andreasen Struijk, Ph.D.
Aalborg University, Aalborg, Denmark
naja@hst.aau.dk
Phone: 9940 7457
http://vbn.aau.dk/en/persons/lotte-n-s-andreasen-struijk(5000deb5-da2b-4fc0-a221-4eb98f378372).html

Dr. Struijk’s research focuses on rehabilitation robotics, tongue computer interfaces, assistive robotics, neurorehabilitation robotics, human machine interfacing, and biorobotics.


Shanbao Tong, Ph.D.
Neural Engineering Laboratory
School of Biomedical Engineering
Med-X Research Institute
Shanghai Jiao Tong University, Shanghai 200030, China
shanbao.tong@gmail.com
http://nel.sjtu.edu.cn

Dr. Shanbao Tong directs the neural engineering laboratory on the research of (1) multimodal neuroimaging techniques for understanding the brain following ischemic injury, including EEG, fNIR and fMRI; (2) functional connectivity and neural plasticity following the ischemic stroke and its rehabilitation, (3) functional optical brain imaging and the instrumentation of high resolution and real time laser speckle imaging techniques and systems. His lab has engaged in developing high resolution cerebral blood flow imaging for both anesthetized and freely moving subjects, (4) transcranial ultrasound stimulation and applications.


Karen L. Troy, PhD
Associate Professor, Biomedical Engineering and Mechanical Engineering
Worcester Polytechnic Institute, Worcester, MA
ktroy@wpi.edu
http://wp.wpi.edu/MBL

Karen L. Troy directs the Musculoskeletal Biomechanics Laboratory, where she investigates questions related to musculoskeletal health and structure, physical activity, and biomechanics, in healthy and clinical populations. She has expertise in computational biomechanics and finite element modeling, aging and fall avoidance, and medical imaging. She has worked on clinical trials targeting bone health in both healthy women and people with spinal cord injury. She collaborates with physicians in the areas of orthopaedic trauma, radiology, rheumatology, and physical medicine and rehabilitation.


Aleksandra Vuckovic, Ph.D.
University of Glasgow, Glasgow, Scotland, UK
Aleksandra.Vuckovic@glasgow.ac.uk
Phone: 0141 330 3251

Dr. Vuckovic’s research interests are in cortical basis of sensory motor control and neuroplasticity. Recently she has been developing novel Brain Computer Interface strategies for patient self-managed therapies. She is also interested in EEG markers of neurological conditions such as neuropathic pain and in development and clinical testing of EEG and fMRI based neuromodulatory therapies based on single and multiple users.


Qi Wang, Ph.D.
Columbia University, New York, NY, USA
qi.wang@columbia.edu
Personal: http://cnec.columbia.edu/qi-wang-0
Lab: http://neclab.bme.columbia.edu/

Dr. Wang’s research interests include neural coding, neuroprosthetics, brain-machine interfaces, systems neuroscience and biomedical instrumentation. As the director of Columbia’s  Raymond and Beverly Sackler Laboratory for Neural Engineering and Control, he investigates Brain-machine interfaces, Neural coding of tactile sensations, and Biomedical instrumentation. More specifically, the lab utilizes experimental and theoretical approaches to investigate how the brain extracts information about the outside world through the electrical activity of neurons (reading the neural code), and how we shape downstream population neural activities, and ultimately perception, through patterned microstimulation (writing the neural code). The long-term goal of our research is to provide the bridge to clinical applications.


Yiwen Wang, Ph.D.
Hong Kong University of Science and Technology, Kowloon, Hong Kong
eewangyw@ust.hk

Yiwen Wang is currently assistant professor of Department of Electronics and Computer Engineering and Department of Chemical and Biological Engineering at the Hong Kong University of Science and Technology, Kowloon, Hong Kong. Her research interests are in neural decoding of brain-machine interfaces, adaptive signal processing, computational neuroscience, neuromorphic engineering. She serves in the IEEE EMBS Neural Engineering Tech Committee, and is an Associate Editor of the IEEE Transactions on Neural Systems and Rehabilitation Engineering. She holds one US patent and has authored more than 70 peer-reviewed publications.


James D. Weiland, Ph.D.
University of Michigan
Ann Arbor, MI
jweiland@med.usc.edu
Phone: 323-442-6670

Dr. Weiland is a Professor in the Department of Biomedical Engineering at the University of Michigan, and director of the BioElectronic Vision Laboratory. He studies implantable and wearable electronic systems for the visual system and other sensory modalities. Current research projects include bioelectronic retinal prostheses and wearable smart cameras.


Dezhong Yao, Ph.D.
Professor of Neuro-engineering and Neuro-imaging
Editor of Brain Topography
Editor of Physiological Measurement
Director, Center for Information in Medicine, University of Electronic Science and Technology of China
No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China
Dyao@uestc.edu.cn
Phone: +86-28-61830654
http://www.neuro.uestc.edu.cn/bci/member/yao/yao.html

Dr. Yao’s research interests include EEG inverse and forward, quantitative EEG (qEEG), simultaneous EEG and fMRI, and Brain-Apparatus Conversation (Bacomics). He got his first PhD in Applied Geophysics (1991) at Chengdu University of Technology, and second PhD in Biomedical Science (2005) at Aalborg University. He is a full professor since 1995, a Changjiang Scholar Professor (2006), and the Director of Key Laboratory for NeuroInformation of Ministry of Education of China, and the Director of International Joint Research center for Neuroinformation of Ministry of Science and Technology of China. He is an AIMBE Fellow (2017) and “Roy John Award”winner (2018).


Ping Zhou, Ph.D.
Professor, Department of Physical Medicine and Rehabilitation
University of Texas Health Science Center at Houston (UTHealth)
ping.zhou.1@uth.tmc.edu
Phone: 713-797-7126 • Fax: 713-500-0710

Dr. Ping Zhou is a Professor in Physical Medicine and Rehabilitation at the University of Texas Health Science Center at Houston (UTHealth), TX, USA. He directs the NeuroMyo Engineering for Rehabilitation Laboratory of the TIRR Memorial Hermann Hospital, Houston, TX, USA, and the Neuromuscular Performance & Rehabilitation Laboratory of the Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China. His current research interests include biomedical signal (in particular, EMG) processing, motor unit pathophysiology after neurological injuries, noninvasive electrodiagnosis of neuromuscular diseases, advanced myoelectric control, and assistive devices for neurorehabilitation.

Login

New Here? Sign Up

Looking for increased exposure in the field of biomedical engineering? EMBS offers journals, conferences and a community for biomedical engineers. Membership includes PULSE Magazine.

Join EMBS