Associate Editors

Panagiotis Artemiadis, Ph.D.
Arizona State University, Tempe, AZ, USA
Phone: (480) 965-4182, Fax: (480) 727-9321

Dr. Artemiadis’ primary research interests have been in robotics and autonomous systems that interact with humans. The goals of his research have been to improve the quality of life by developing and controlling robotic devices that physically and cognitively interact and collaborate with humans. This interaction can be with devices that assist and augment human capabilities, as well as provide motor rehabilitation therapy to impaired individuals. In order to accomplish this, Dr. Artemiadis’ research has been focusing on answering important questions regarding the symbiosis of humans and robots in environments that involve physical and cognitive interaction.

Mahnaz Arvaneh, Ph.D.
Department of Automatic Control and Systems Engineering
The University of Sheffield
Mappin Street, Sheffield, S1 3JD
Phone: +44 (0)114 222 5649

Dr Arvaneh’s research interest includes brain-computer interface, assistive technology, prosthetic control, cognitive processes and their clinical applications. She applies her expertise in adaptive signal processing and machine learning to accurately detect different biomarkers within brain and other physiological signals. She has incorporated these biomarkers in a range of robotic stroke rehabilitation, brain monitoring and cognitive performance enhancement experiments both in the laboratory and clinical settings. Dr Arvaneh is the head of Physiological Signals and Systems laboratory in the Automatic Control and Systems Engineering department at University of Sheffield, where analytical and experimental techniques are combined to develop improved therapeutic, assistive, adaptive and rehabilitative technologies for a variety of conditions.

Fabio Babiloni, Ph.D.
Associate Professor of Physiology
Associate Editor of Clinical Neurophysiology
Associate Editor of International Journal of Bioelectromagnetism
University of Rome “La Sapienza”, P.le A. Moro 500185, Rome, Italy
Phone: +39-06-49910317
Fax: +39-06-49910917

Dr. Babiloni’s research interests include high resolution EEG, multimodal integration of EEG, MEG and fMRI data, and brain computer interface. Dr. Fabio Babiloni investigated the techniques needed to improve greatly the spatial details of the brain activity as obtained by scalp EEG recordings. The original scientific contributions of dr. Fabio Babiloni in the field of the high resolution EEG are related to the study of methods to improve greatly the spatial distribution of the acquired EEG signals, usually blurred and distorted by the action of the head as volume conductor. Dr. Babiloni also studies possible methods for the multimodal integration of data from different brain imaging modalities. Another area of interest is the study of possible methods for the estimation of cortical connectivity, i.e. the estimation of how the single cortical areas can be functionally linked one to the others during particular time period of a task. Dr. Babiloni investigates this issue with the use of several methods, some of them only used in the fMRI field and now adapted by dr. Babiloni also in the field of EEG and MEG. More recently, Dr. Babiloni has initiated the study of possible methods to recognize imagined mental activity by using the non invasive EEG electrodes.

Thor F. Besier PhD
Associate Professor, Auckland Bioengineering Institute & Department of Engineering Science
University of Auckland, New Zealand

Thor Besier is an Associate Professor at the Auckland Bioengineering Institute and has a joint appointment with the Department of Engineering Science at the University of Auckland, New Zealand. Thor’s research combines medical imaging with computational modelling to understand mechanisms of musculoskeletal injury and disease.  He has published >95 peer-reviewed journal papers in this area and has received grant funding from the NIH, NSF, FDA, Australian ARC and NHMRC and NZ Marsden Fund. Thor’s current projects focus on developing gait retraining technology for osteoarthritis and neurological disorders as well as open source modelling tools to generate musculoskeletal models for in silico testing of medical devices. Prior to joining the Auckland Bioengineering Institute in 2011, he spent 8 years at Stanford University as a faculty member in the Department of Orthopaedics and a post-doctoral research fellow in Bioengineering. Thor completed his Ph.D. in 2000 at the University of Western Australia in the field of Biomechanics.

Anastasios Bezerianos, Ph.D.
Dept. of Medical Physics, School of Medicine
University of Patras, GR 26500 PATRAS, Greece
Phone:+30 -2610-996115

Prof. A. G. Bezerianos heads the Biosignal Processing Group, one of the five groups of Medical Physics Department at the Medical School in Patras, Greece. The group is engaged in research and teaching in both undergraduate and postgraduate levels and participates in national, European Union and international research and development projects. His research interests are analysis of biological time series, information measures of brain injury, modeling biological systems, and bioinformatics.

Anna M. Bianchi, MS
Full professor of Biomedical Engineering
Politecnico di Milano, Department of Electronics, Information and Bioengineering
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Phone: +39 02 2399 3342

Her research interests are mainly related to the processing of biomedical signals and images and to the development of innovative methodologies for feature extraction and for enhancement of the information content and the formulation of new interpretative models to be applied both in physiological studies and in clinics.

Applications are in the analysis of signals and images from the central nervous system, including EEG, sEEG, fMRI, fNIRS, MRI for a better understanding of the physiological mechanisms related to cognitive processes, brain plasticity, rehabilitation, and for the characterization of pathological conditions, such as epilepsia, cerebral palsy, traumatic brain injury. Further studies of peripheral signals, heart rate, blood pressure, respiration, are focused on cardiovascular modelling and emotion recognition.

The methodological effort focuses mainly on the development of time-frequency analysis; parametric recursive identification; multi-variable parametric modeling; non-linear feature extraction; linear and non-linear synchronization of biomedical series; data, signal and image fusion.

Jaimie Borisoff, Ph.D.
Canada Research Chair in Rehabilitation Engineering Design
British Columbia Institute of Technology
Phone: (604) 451-6988

Jaimie Borisoff is the Canada Research Chair in Rehabilitation Engineering Design at the British Columbia Institute of Technology, an Adjunct Professor at the University of BC Occupational Therapy and Biomedical Engineering Programs, and a Principal Investigator at ICORD (International Collaboration on Repair Discoveries). His lab performs rehabilitation engineering research and development about various assistive and therapeutic technologies for people with disabilities. His projects include the development of “dynamic” wheeled mobility devices that allow users to quickly change their wheelchair configuration on-the-fly to suit different daily activities (e.g. the Elevation™ ultralight wheelchair), power-assisted wheeled mobility applications, and a supported-walking exercise machine for improved cardiovascular and locomotor outcomes after spinal cord injury. His applied research includes the design and evaluation of technologies, with a focus on function, performance, usability and commercial translation.

Tim Bruns, Ph.D.
Department of Biomedical Engineering & Biointerfaces Institute
University of Michigan, Ann Arbor, MI, USA

Dr. Bruns leads the Peripheral Neural Engineering and Urodynamics Lab at the University of Michigan. The pNEURO Lab develops interfaces with the peripheral nervous system to restore function and examine systems-level neurophysiology. The lab has specific focuses in autonomic organ control, such as for bladder and sexual dysfunction, and in interfaces with dorsal root ganglia. Techniques in the lab include using microelectrodes for real-time decoding and closed-loop control, anatomical modeling, and behavioral neuromodulation. The lab works with several animal models and also performs clinical research.

Wei Chen, Ph.D.
Fudan University, Shanghai, China

Wei Chen is Professor, Director of Center of Intelligent Medical Electronics at School of Information Science and Technology, and Director of the Physiological Signal and Sleep platform in the Human Phenome Institute, at Fudan University, Shanghai, China. She is also an Associate Editor of IEEE Journal on Biomedical Health Informatics (J-BHI).

Her research interests include patient health monitoring, sleep monitoring, brain activity monitoring, smart sensor systems, wearable sensor systems, health robotics, machine learning and data fusion for healthcare. Her research center mainly focuses on advanced sensor systems; monitoring physiological, psychological and behavioral signals; multi-modal signal processing and data fusion, as well as user-centered design. Her center aims at improving quality of life, empowering patients for personalized health management; and providing doctors more accurate and efficient clinical decision support. Her research in the areas of neonatal monitoring, sleep monitoring, and smart rehabilitation covers healthcare for people of different age groups, from neonates to elderly.

Maryam Doborjeh, PhD
Department of Computer Science
Auckland University of Technology, New Zealand

Dr. Doborjeh is currently a lecturer in the Computer Science Department at Auckland University of Technology, New Zealand and is affiliated with Knowledge Engineering & Discovery Research Institute and as an associate researcher. Doborjeh has been principally researching in the field of Neuroinformatics, where she develops new methods based on brain-inspired artificial intelligence technologies to improve decision-making and decision support. Her research interest also includes deep learning, spiking neural networks, cognitive computation, mental/brain health informatics, spatiotemporal brain data analysis, and personalised modelling. She is also experienced in modelling, visualising, clustering and classifying of different types of brain data including EEG, MRI and fMRI. Doborjeh has been leading several successful collaborative projects in health informatics to develop prognostic/diagnostic systems for detection and prediction of mental issues and neurological diseases such as depression, cognitive impairment, dementia and stroke.

Max Donelan, PhD
Department of Biomedical Physiology & Kinesiology
Simon Fraser University, Burnaby, BC, Canada

Max Donelan is an Professor of Biomedical Physiology & Kinesiology at Simon Fraser University in Vancouver, British Columbia. His research integrates biomechanical, neurophysiological, and energetic approaches to uncover fundamental principles of biological movement, and the application of these principles to improve lives. For TNSRE, he is particularly interested in technological advances that that leverage fundamental insight into human physiology. His expertise includes neuromechanics, biomechanics, energetics, motor control, locomotion, wearable technology, exoskeletons, and energy harvesting.

Fabrizio De Vico Fallani, Ph.D.
INRIA Research Scientist
Brain and Spine Institute (ICM) Paris, France

De Vico Fallani’s group works on the analysis and modeling of brain functioning from a system perspective. Theoretical developments are in the field of network theory and signal processing adapted to neuroimaging data. Applications range from the study of brain diseases (e.g., stroke, Alzheimer’s disease) to the development of brain-computer interfaces. In 2009 he was awarded the prize for the “Best PhD Thesis” and in 2012 the “Young Researcher” award by the National Group of Bioengineering (GNB). In 2018 he received the “Young Investigator” award from the Complex Systems Society (CSS).

Elena (Lanie) M. Gutierrez Farewik, PhD
Professor BioMEx Center Department of Mechanics
KTH Royal Institute of Technology, Stockholm, Sweden

Dr. Gutierrez Farewik is a Professor of Biomechanics at the Department of Mechanics at KTH Royal Institute of Technology, with affiliation to the Department of Women’s and Children’s Health at Karolinska Institutet. Her research interests span several biological scales, and include modelling, predictive simulation and device design for children and adults with motor disorders. She and her group combine experiments with numerical modelling to study the short- and long-term consequences of deviating loading on musculoskeletal tissues in growing children. They are also developing biosignal-controlled assistive-as-needed devices for the lower extremities for applications in neurorehabilitation and habilitation, with a goal to preserve available neural pathways and complement the user’s functional abilities.

James Finley, Ph.D.
Assistant Professor
Division of Biokinesiology and Physical Therapy
University of Southern California, Los Angeles, CA, USA
Phone: 323-442-4837

Dr. Finley directs the Locomotor Control Laboratory at the University of Southern California where he investigates how locomotion is controlled and adapted in both the healthy and injured neuromuscular system. Dr. Finley’s lab develops theoretical models and experiments based on principles of neuroscience, biomechanics, and exercise physiology to identify the factors that guide learning and rehabilitation. Ultimately, the goal of his work is to design novel and effective interventions to improve locomotor control in individuals with damage to the nervous system.

Deanna H. Gates, Ph.D.
Associate Professor of Movement Science, Biomedical Engineering and Robotics
University of Michigan, Ann Arbor, MI, USA
Phone: +1-734-647-2698

Dr. Gates directs the Rehabilitation Biomechanics Laboratory at the University of Michigan. The lab focuses on 1) determining biomechanical and motor control strategies for repetitive human movements such as walking and reaching, 2) assessing biomechanical adaptations to prosthesis and orthosis use, 3) outcomes assessment of devices and rehabilitation, and 4) optimization of prosthetic control.

Dongyun Gu, Ph.D.
Professor. Dept. of Orthopaedic Surgery, Shanghai Ninth People’s Hospital of Shanghai Jiao Tong University
School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University

Dr. Dongyun Gu is a Professor in the Department of Orthopaedic Surgery of Shanghai’s Ninth People’s Hospital, affiliated with Shanghai Jiao Tong University School of Medicine and has a joint appointment with the School of Biomedical Engineering in Shanghai Jiao Tong University, China. She is the deputy director of Engineering Research Center of Digital Medicine & Clinical Translation of the Ministry of Education, China, which is the first national center that focuses on innovative translational research and development of digital medicine. Dr. Gu’s research interests include motion analysis, musculoskeletal biomechanics, wearable devices and machine learning. Her research group investigates human walking disorder affected by physical disability, neurological disorders, musculoskeletal pathology and age-related diseases, with a goal of developing gait rehabilitation interventions and improving clinical decision-making. They also focus on the development of wearable gait analysis systems and deep-learning based human pathological gait recognition.

Walter Herzog, Ph.D.
Director Human Performance Lab
Canada Research Chair in Molecular and Cellular Biomechanics
Professor, Faculty of Kinesiology, Engineering, Medicine and Veterinary Medicine
Phone: 403-220-8525
Fax: 403-284-3553

Dr. Herzog’s research is focused on the neuro-biomechanics of the musculoskeletal system. Expertise is in the area of growth, healing, and adaptation of soft (ligament, tendon, muscle, and articular cartilage) and hard (bone tissues). Within this area we work experimentally and theoretically on the molecular/cellular, in vitro, in situ, and in vivo level. It also includes cell manipulation and mechanical testing as well as finite element modeling, continuum mechanics, simulations and theories of growth and adaptation. Current research interests of his laboratory may be divided into three basic areas: (i) muscle mechanics, (ii) joint injuries and diseases; and (iii) clinical rehabilitation. The long term goals in muscle mechanics research are to understand the molecular mechanisms of contraction, and to determine the functional role of muscles working in vivo. The focus of the joint biomechanics research is in understanding the in vivo mechanical loading of joints during everyday movements and the adaptive/degenerative responses that this loading might produce. The clinical rehabilitation research is primarily focused on patients with neuro-musculoskeletal injuries and diseases and effective (conservative) treatment strategies.

He (Helen) Huang, Ph.D.
Professor, NCSU/UNC Department of Biomedical Engineering
Director, NCSU/UNC Closed-Loop Engineering for Advanced Rehabilitation (CLEAR) Core
North Carolina State University and University of North Carolina at Chapel Hill

Dr. Huang is a Professor of Biomedical Engineering in the Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill (UNC) and North Carolina State University (NCSU) and the Director of the NCSU/UNC Closed-Loop Engineering for Advanced Rehabilitation (CLEAR) Core. Dr. Huang’s research interest lies in neural-machine interfaces for prostheses and exoskeletons, wearer-robot interaction, adaptive and optimal control of wearable robots, and human movement control. She pioneered EMG-based neural interface for robotic prosthetic legs. This work has won her the Delsys Prize in 2008. Her lab also invented novel control for multifunctional prosthetic arms based on EMG-driven musculoskeletal models. Her current research focuses on (1) optimal adaptive control of wearable robots with human-in-the-loop, (2) fault-tolerance in wearer-robot interaction, and (3) shared control of artificial limbs. She is a senior member of IEEE and member of the Society for Neuroscience and BMES.

Ernest N. Kamavuako, Ph.D.
Senior Lecturer in Engineering
Centre for Robotics Research (CORE)
Department of Informatics
Faculty of Natural & Mathematical Sciences
King’s College London
Strand Campus, Bush House, Level 5, (N)5.03, 30 Aldwych, London, WC2B 4BG, United Kingdom
Tel: +44 207 848 8666

Ernest Kamavuako is a Senior Lecturer in the department of Informatics, King’s College London, United Kingdom. Between 2014 and 2017, he was an Associate Professor in the Department of Health Science and Technology, Aalborg University, Denmark with excellent teaching and supervision skills. In 2015, he was named teacher of the year by the students of study board for health technology and Sport science.  From 2007 to 2008, he was a Research Scholar in the Biomedical Department, IUPUI, Indianapolis, USA. From 2012 to 2013, he was a Visiting Postdoctoral Fellow at the Institute of Biomedical Engineering, University of New Brunswick, Canada. He has good publication record with main research interests related to the use of invasive recordings in the control of upper limb prostheses. Other research interests include muscle recovery functions following electrical stimulation, applied signal processing and the application of near-infrared spectroscopy and EEG for brain–computer interface and speech processing. ENK is an Associate Editor for IEEE transactions on Neural Systems and Rehabilitation Engineering.  In January 2017, ENK was appointed Adjunct Professor in the Department of electrical and computer engineering at the University of New Brunswick. In 2017 he was working as academic visitor in the department of bioengineering, Imperial College London, United Kingdom.

Tatiana Kameneva
Vice-Chancellor’s Women in STEM Fellow
Senior Lecturer
Faculty of Science, Engineering and Technology
Swinburne University of Technology, Australia
Tel: +61 3 9214 4697

Dr Kameneva’s research interests include visual neuroscience and computational modelling; her research combines engineering tools and mathematical methods to solve open problems in biology and medicine. Dr Kameneva has expertise in control theory tools and their applications in life sciences and neuroprosthetic implants. Dr Kameneva contributes to the understanding of neural information processing in response to stimuli; she studies how electrical and optical stimulation affects neural activations and works on the development of new stimulation methods that can be used across a broad range of medical bionics applications.

Derek Kamper, Ph.D.
Associate Professor, NCSU/UNC Joint Department of Biomedical Engineering
North Carolina State University
University of North Carolina at Chapel Hill
4420 Engineering Building III, Raleigh, NC
Tel: (919) 515-4411

Dr. Kamper’s research interests focus on the neuromechanics of the upper extremity and the restoration of upper extremity function following neurological injury. Studies of biomechanics and motor control are undertaken with the goal of identifying impairment mechanisms in individuals following neurological damage. Knowledge of these mechanisms guides the development of novel interventions, including virtual reality and soft exoskeletons.

Emily A. Keshner, PT EdD
Professor, Dept. of Physical Therapy
Director, Virtual Environment and Postural Organization (VEPO) Lab
Past-President, ISPGR and ISVR
Temple University, Philadelphia, PA, USA

Dr. Emily A. Keshner is a Professor in the Department of Physical Therapy at Temple University. She is Director of the Virtual Environment and Postural Orientation (VEPO) Laboratory at Temple University, which was developed for experimental and clinical testing of postural behavior within a simulated visual environment where she collaborates with clinicians, computer scientists, and bioengineers. Her current research focuses on how the CNS computes conflicting sensory feedback demands to organize effective postural behavior. Studies are performed with multiple populations including healthy adults and those with balance problems and central nervous system disorders, such as vestibular deficit, stroke and cerebral palsy, to understand how control parameters change with age and dysfunction. The goal of this research is to develop treatment interventions that will effectively reduce instability and falls in aging and clinical populations.

Kazuo Kiguchi, Ph.D.
Professor, Faculty of Engineering
Kyushu University, Fukuoka, Japan
Phone: +81-92-802-3236
Fax: +81-92-802-0001

Dr. Kiguchi directs System Engineering Laboratory in Department of Mechanical Engineering at Kyushu University. Dr. Kiguchi’s research interests include human assist robots, rehabilitation robots, human-robot interface, EEG analysis, EMG analysis, human motion simulators, and surgery simulators.

Glenn K. Klute, PhD
Research Career Scientist, Dept. of Veterans Affairs
Affiliate Professor, Dept. of Mechanical Engineering, University of Washington

Dr. Klute’s research aims to enhance the mobility of individuals with lower limb amputation. His interests in biomechanics and robotics include: development of prosthetic lower limbs to facilitate the complex maneuvering gait that occurs in everyday life, terrain adapting prostheses that improve balance, and prostheses that remain secure despite vigorous activity in demanding environments.

Li-Wei (Leo) Ko, Ph.D.
Associate Professor of Institute of Bioinformatics and Systems Biology
National Chiao Tung University, 30010, Hsinchu, Taiwan
Phone: +886-3-5712121#56950

Dr. Ko is an Associate Professor in Institute of Bioinformatics and Systems Biology in National Chiao Tung University, Hsinchu, Taiwan. Dr. Ko is also affiliated with Institute of Biomedical Engineering, and Brain Research Center in NCTU, Taiwan. Dr, Ko is also the visiting scholar in Institute for Neural Computation (INC) in University of California, San Diego (UCSD). Dr. Ko leads Neural Engineering Laboratory in NCTU and primary research interests are focusing on neural engineering related research, especially in brain computer interface (BCI), real-world neuroimaging (RWN), EEG-fMRI simultaneous recording, functional near-infrared spectroscopy(fNIRS), and neural computation in the neurological diseases such as neural rehabilitation, migraine, and sleep disorders. In academic service, Dr. Ko was the Associate Editors of IEEE Transactions on Neural Networks and Learning Systems (Impact Factor: 6.108, Rank: 3/104, of computer science, theory and methods) in IEEE Computational Intelligence Society (CIS) from 2010-2015 and served as the committee members in neural networks and fuzzy systems technical committees.

Chandramouli Krishnan, P.T., Ph.D.
Assistant Professor of Physical Medicine & Rehabilitation, Biomedical Engineering, Kinesiology, and Robotics Institute
University of Michigan, Ann Arbor, MI, USA
Phone: +1-734-936-4031

Professor Krishnan directs the Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab) at the University of Michigan. He is a physical therapist by background and has vast clinical experience both in inpatient and outpatient rehabilitation. He received his PhD in Physical Therapy & Rehabilitation Science from the University of Iowa in 2009 and completed a 3-year postdoctoral fellowship in Robotics and Noninvasive Brain Stimulation at the Rehabilitation Institute of Chicago and Northwestern University. His research involves both mechanistic and interventional studies to facilitate our current understanding of neuromuscular function and regulation in the context of movement control and neuromuscular plasticity. He has a special interest in developing and testing low-cost technologies for the assessment and treatment of neurological and orthopedic conditions.

Tania Lam, PhD
Professor of Kinesology
University of British Columbia
Lab Website:
Office Address:
ICORD, Blusson Spinal Cord Centre
818 West 10th Ave
Vancouver, BC V5Z 1M9

The overall goal of the research done by Dr. Lam is to advance our understanding of the neural control of human walking and the mechanisms involved in adapting walking to environmental demands. This basic understanding of the human locomotor system will, in turn, inform our efforts in the development and advancement of gait rehabilitation interventions for people who had a neurological injury.

Lorenzo Masia, PhD
Heidelberg University, Heidelberg, Germany
Phone: +49 (0)6221-54 16421
Insititutional website:

Lorenzo Masia is Professor at Heidelberg University and Chair in Medical Technology and Biorobotics at the Institute of Computer Engineering. His primary research focuses on the design and development of robotic technology for human rehabilitation and augmentation, with special emphasis on soft wearable exosuits, novel actuation design and control implementation for human machine interfaces. With more than 10 years of experience in the field of Haptics, Robot-Aided Rehabilitation and Assistive Technology his research group was awarded multiple times in the leading conferences in Biorobotics and Robotic Rehabilitation winning two IEEE Best Student Paper Awards (IEEE ICORR2015 and IEEE Biorob2016), an IEEE Best Paper Award (IEEE ICORR2011), and finalist of “Best Human-Robot Interaction (HRI) Paper Award” at IEEE ICRA 2017 held in Singapore on May 2017.

Prof. Masia has been appointed twice Program Chair for the IEEE International Conference in Rehabilitation Robotics (ICORR) 2015 and IEEE Biorobotics and Biomechatronic Conference (BIOROB) 2016. He served as Chairman for Workshop/Tutorial for the IEEE International Conference on Robotics and Automation (IEEE ICRA 2017) held in Singapore on May 2017, and He was the co-Program Chair of IEEE ICORR 2017 (London, UK). In 2018 He served Program Chair for the International Conference on Neurorehabilitation (ICNR 2018) and Co-Program Chair, Editor in Chief and Editor of Publication for IEEE Biorob 2018.

Silvestro Micera, Ph.D.
Assistant Professor of BioRobotics
ARTS and CRIM Labs
Scuola Superiore Sant’Anna, Pisa, Italy
Head of the Neuroprosthesis Control Group
Institute for Automation
Swiss Federal Institute of Technology, Zurich, Switzerland

Dr. Micera’s research interests include the development of hybrid neuroprosthetic systems (interfacing the central and peripheral nervous systems with artificial systems) and of mechatronic and robotic systems for function and assessment restoration in disabled and elderly persons.

Karen Moxon, Ph.D.
Professor of Biomedical Engineering and Mechanical and Aerospace Engineering
Center for Neuroscience, University of California, Davis CA, USA
Phone: 530-752-8156

Dr. Moxon is Professor in the departments of Biomedical Engineering and Mechanical and Aerospace Engineering as well as a member of the Center for Neuroscience at the University of California, Davis. Professor Moxon received her BS from the University of Michigan in Chemical Engineering and her PhD from the University of Colorado in Aerospace Engineering. Her research examines how neuronal circuits encode information and the impact of injury and disease on neural encoding. She has developed new technologies to further this area of research, obtaining two patents with four patents pending. She is an elected fellow of the American Institute for Medical and Biological Engineers and the American Association for the Advancement of Science.

Volkan Patoglu, Ph.D.
Associate Professor, Mechatronics Engineering
Sabanci University,
Istanbul, Turkey
Phone: +90-216-4839604
Labs: and

Dr. Patoglu’s research is in the area of physical human-robot interaction. His research focuses on optimal design and control of force-feedback robotic systems (e.g., rehabilitation robots, exoskeletons, prostheses, surgical robots) under the constraints imposed by human biomechanics and sensorimotor control. His studies extend to cognitive robotics.

Carolynn Patten, PT, PhD, FAPTA
University of California, Davis CA, USA

Carolynn Patten, Ph.D., PT is with the University of California, Davis. Dr. Patten is a senior investigator with the VA Brain Rehabilitation Research Center where she holds Research Career Scientist status. In 2016, Dr. Patten was named as a Catherine Worthingham Fellow of the American Physical Therapy Association, the highest honor among APTA’s membership. Dr. Patten’s primary research interests involve neurophysiological and biomechanical approaches to understand the neural control of movement, mechanisms of disordered motor control in neuropathological conditions, and the capacity for motor recovery in adults following central nervous system injury. Her translational neuroscience research program uses a combination of techniques including transcranial magnetic stimulation (TMS), neurophysiological methods (EMG, motor unit recordings, reflex probes), neuroimaging and human performance. As a result, her research crosses disciplines including motor control, physiology, biomechanics, clinical medicine, rehabilitation and bioengineering. Dr. Patten’s research has been supported by awards from the: Department of Veterans Affairs, National Institutes of Health, Whitaker Foundation, Brooks Research Endowment and Foundation for Physical Therapy. Her current projects involve: 1) investigation of novel approaches (i.e., rTMS (repetitive transcranial magnetic stimulation), TDCS (transcranial direct current stimulation), motor priming, robotics) to reverse central neural inhibition and promote behavioral motor recovery following stroke; 2) identification of neurobehavioral characteristics of therapeutic responders and non-responders; 3) development of customized therapeutic interventions using computational modeling. Dr. Patten is cross-appointed in the Departments of Applied Physiology and Kinesiology (College of Health and Human Performance) and Neurology (College of Medicine). Her teaching responsibilities include Translational Neuroscience Research.

Alessandra Pedrocchi, Ph.D.
Associate Professor of Biomedical Engineering
Politecnico di Milano, Milano, Italy
Phone: (39) 02-23993363

Dr. Pedrocchi research interest is neuroengineering, including biomechanics in motor control, neurorobotics, computational neuroscience models by spiking neural networks, design of bioartificial interfaces to in-vitro neurons and new technologies for neurorehabilitation, with a special emphasis on upper limb exoskeletons for rehabilitation and assistive devices, neuroprostheses and the study of the correlation between brain plasticity and functional recovery.

Philip Requejo, PhD
Director, Rehabilitation Engineering Department
Associate Director of the Pathokinesiology Laboratory at Rancho Los Amigos National Rehabilitation Center

Dr. Philip Requejo is the Director of the Rehabilitation Engineering Department and Associate Director of the Pathokinesiology Laboratory at Rancho Los Amigos National Rehabilitation Center. He serves as a faculty member at the University of Southern California in the Departments of Biomedical Engineering, Human and Evolutionary Biology, and Biokinesiology and Physical Therapy. He also is the Director of Rehabilitation Engineering Department and Co-Director of the RERC on Technologies for Successful Aging with Disability at the Model Systems Knowledge Translation Center (MSKTC). The MSKTC is a national center that helps facilitate the knowledge translation process to make research meaningful to those with Spinal Cord Injury (SCI), Traumatic Brain Injury (TBI) and Burn Injury (Burn). He received his undergraduate degree in Electrical Engineering and PhD degree in Kinesiology from the University of Southern California. He is a faculty in the Department of Biomedical Engineering and Department of Kinesiology, and Department of Biokinesiology and Physical Therapy at USC. His research primarily falls into several broad areas of rehabilitation engineering and biomechanics research; focusing on the design, analysis, and implementation of technologies to preserve and enhance mobility in those with spinal cord injury- particularly focusing on the biomechanics of the weight-bearing shoulder to prevent and treat shoulder pain.

Massimo Sartori, PhD
University of Twente, Enschede, Netherlands
Phone: +31534891441
Personal website:
Lab website:

Massimo Sartori is an Assistant Professor at the University of Twente where he directs the Neuromechanical Modelling and Engineering Lab. Dr Sartori’s primary research focuses on interfacing assistive robotic technologies with the neuromuscular system for enhancing human movement. A distinctive trait of Dr Sartori’s approach is that of fusing multi-scale musculoskeletal modelling formulations with bioelectrical recordings to investigate basic mechanisms of movement neuromechanics in vivo. On these topics he has been awarded prestigious personal grants (ERC Starting Grant, Marie Skłodowska-Curie Fellowship), is PI in large-scale consortium-based projects (i.e. H2020 EFRO GUTs), and received several awards (e.g. NIH/OpenSim Outstanding Research). In 2018, Dr Sartori served as Workshop Chair at IEEE BioRob.

Erik Scheme, Ph.D., P.Eng
University of New Brunswick, Fredericton, Canada
Phone: 1 506 458 7029

Dr. Scheme holds the NB Innovation Research Chair in Medical Devices and Technologies, the charge of which is to grow Industry-Academia partnerships, and to build and strengthen collaborations among industry, researchers and clinicians. His research interests include: health diagnostics and predictive analytics, biological signal processing and control, rehabilitation engineering, and human machine interfaces.

Alfred C. Schouten, Ph.D.
Associate Professor, Delft University of Technology
Faculty of Mechanical, Maritime and Materials Engineering, Department of Biomechanical Engineering, Delft, the Netherlands
University of Twente, Faculty of Engineering Technology, department of Biomechanical Engineering, Enschede, the Netherlands

Dr. Alfred C. Schouten is an associate professor at the Delft University of Technology and the University of Twente. Dr. Schouten’s research interests include neuromuscular control, neuromuscular modeling, EEG analysis, haptic manipulators, system identification, and neurorehabilitation.

Jon Sensinger, Ph.D.
University of New Brunswick, Fredericton, Canada

Dr. Sensinger’s current research efforts are focused on improving the control of prostheses, using computational motor control approaches in upper-limb prostheses and a variety of control strategies for lower-limb prostheses and exoskeletons. Dr. Sensinger is a co-founder and partner of Coapt LLC, a company providing pattern recognition controllers that integrate with existing prosthetic devices.

Peter B. Shull, Ph.D.
Shanghai Jiao Tong University, Shanghai, China

Dr. Shull’s research interests include human performance measurement and analysis, wearable sensors, biomechanics of locomotion, and machine learning. His laboratory develops wearable systems to explore principles of human movement and movement modification. His group combines robotic, haptic, and biomechanics principles to create unique sensors, real-time models, sensor fusion algorithms, and novel feedback devices. They focus on human movement in laboratories, in clinics, and in natural environments such as a home or office. Target applications are in medicine such as osteoarthritis and stroke, and in athletics such as basketball and running.

Siuly Siuly, Ph.D.
Institute for Sustainable Industries & Liveable Cities,
Victoria University, Footscray Park Campus, Melbourne, Australia
Phone: +613 99199511 (office)

Dr Siuly’s research interest includes Biomedical Signal Processing, Detection and Prediction of Neurological Abnormality from Brain Signal Data (e.g. electroencephalogram (EEG) signal data), Brain-Computer Interface, Machine Learning, Deep learning, Pattern Recognition, Artificial Intelligence and Medical Data Mining. She already made significant contributions to the mentioned areas that have been published in top leading journals and conferences. The key aim of her current research is to develop an innovative computer-assisted analysis system that can be used for detecting and predicting neurological abnormalities from EEG signal data. This system will assist medical specialists/experts to rapidly identify neurological problems and provide appropriate treatments and care information for patients.

Lotte N. S. Andreasen Struijk, Ph.D.
Aalborg University, Aalborg, Denmark
Phone: 9940 7457

Dr. Struijk’s research focuses on rehabilitation robotics, tongue computer interfaces, assistive robotics, neurorehabilitation robotics, human machine interfacing, and biorobotics.

Yu Sun, Ph.D.
Key Laboratory for Biomedical Engineering of Ministry of Education of China
Department of Biomedical Engineering
Zhejiang University
38 Zheda Road, 310007, Hangzhou, China

Dr. Yu Sun is a Research Professor in the Department of Biomedical Engineering at Zhejiang University and is also affiliated with the Department of Radiology, the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.  Dr. Sun’s research emphasis has been placed on the integration of the neural engineering, cognitive sciences, and virtual reality in service of insights into functions of the brain, cognition, and behavior. In particular, his research work of brain connectome studies of neuroergonomics and brain state monitoring has provided nascent insights into the neural mechanisms of mental workload/fatigue. Another area of interest is brain-computer interface and its clinical applications such as neural rehabilitation. In academic service, Dr. Sun is also an associate editor of the journal Medical & Biological Engineering & Computing (MBEC), and a youth corresponding expert of the journal Engineering.

Shanbao Tong, Ph.D.
Neural Engineering Laboratory
School of Biomedical Engineering
Med-X Research Institute
Shanghai Jiao Tong University, Shanghai 200030, China

Dr. Shanbao Tong directs the neural engineering laboratory on the research of (1) multimodal neuroimaging techniques for understanding the brain following ischemic injury, including EEG, fNIR and fMRI; (2) functional connectivity and neural plasticity following the ischemic stroke and its rehabilitation, (3) functional optical brain imaging and the instrumentation of high resolution and real time laser speckle imaging techniques and systems. His lab has engaged in developing high resolution cerebral blood flow imaging for both anesthetized and freely moving subjects, (4) transcranial ultrasound stimulation and applications.

Karen L. Troy, PhD
Associate Professor, Biomedical Engineering and Mechanical Engineering
Worcester Polytechnic Institute, Worcester, MA

Karen L. Troy directs the Musculoskeletal Biomechanics Laboratory, where she investigates questions related to musculoskeletal health and structure, physical activity, and biomechanics, in healthy and clinical populations. She has expertise in computational biomechanics and finite element modeling, aging and fall avoidance, and medical imaging. She has worked on clinical trials targeting bone health in both healthy women and people with spinal cord injury. She collaborates with physicians in the areas of orthopaedic trauma, radiology, rheumatology, and physical medicine and rehabilitation.

Aleksandra Vuckovic, Ph.D.
University of Glasgow, Glasgow, Scotland, UK
Phone: 0141 330 3251

Dr. Vuckovic’s research interests are in cortical basis of sensory motor control and neuroplasticity. Recently she has been developing novel Brain Computer Interface strategies for patient self-managed therapies. She is also interested in EEG markers of neurological conditions such as neuropathic pain and in development and clinical testing of EEG and fMRI based neuromodulatory therapies based on single and multiple users.

Yiwen Wang, Ph.D.
Hong Kong University of Science and Technology, Kowloon, Hong Kong

Yiwen Wang is currently assistant professor of Department of Electronics and Computer Engineering and Department of Chemical and Biological Engineering at the Hong Kong University of Science and Technology, Kowloon, Hong Kong. Her research interests are in neural decoding of brain-machine interfaces, adaptive signal processing, computational neuroscience, neuromorphic engineering. She serves in the IEEE EMBS Neural Engineering Tech Committee, and is an Associate Editor of the IEEE Transactions on Neural Systems and Rehabilitation Engineering. She holds one US patent and has authored more than 70 peer-reviewed publications.

Yan Tat Wong, PhD
Senior Lecturer
Department of Electrical and Computer Systems Engineering
Department of Physiology
Monash University, Clayton, VIC, Australia
Phone: +61 3 9905 1935

Dr. Wong’s research interests are broadly separated into neural prostheses and systems neuroscience. In the field of neural prostheses, Dr Wong is interested in brain machine interfaces for upper limb movement control, cortical and retinal stimulation studies (Bionic vision), improved cochlear implant fitting techniques, new electrode technologies and the general use of local field potentials to improve neural prostheses. On the basic neuroscience side, Dr Wong studies the role of the local field potentials in communication across brain areas and in multi-effector decision making, reward learning and movement planning. This is done with a mix of recording techniques from in vivo electrophysiology, to EEG, MEG and fMRI.

Dongrui Wu, Ph.D.
Professor, Huazhong University of Science and Technology, Wuhan, China

Dr. Wu received his PhD in Electrical Engineering from the University of Southern California. He is now Professor in the School of Automation, Huazhong University of Science and Technology, Wuhan, China, and directs its Brain-Computer Interface and Machine Learning Lab. His research interests include affective computing, brain-computer interfaces, computational intelligence, and machine learning. He has published over 100 papers in these areas. He is also an Associate Editor of the IEEE Computational Intelligence Magazine, and the IEEE Transactions on Human-Machine Systems.

Dezhong Yao, Ph.D.
Professor of Neuro-engineering and Neuro-imaging
Editor of Brain Topography
Editor of Physiological Measurement
Director, Center for Information in Medicine, University of Electronic Science and Technology of China
No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China
Phone: +86-28-61830654

Dr. Yao’s research interests include EEG inverse and forward, quantitative EEG (qEEG), simultaneous EEG and fMRI, and Brain-Apparatus Conversation (Bacomics). He got his first PhD in Applied Geophysics (1991) at Chengdu University of Technology, and second PhD in Biomedical Science (2005) at Aalborg University. He is a full professor since 1995, a Changjiang Scholar Professor (2006), and the Director of Key Laboratory for NeuroInformation of Ministry of Education of China, and the Director of International Joint Research center for Neuroinformation of Ministry of Science and Technology of China. He is an AIMBE Fellow (2017) and “Roy John Award” winner (2018).

Matías Zañartu, PhD
Associate Professor – Department of Electronic Engineering
Deputy Director – Advanced Center for Electrical and Electronic Engineering
Lab Director – Voice Production Laboratory
Universidad Técnica Federico Santa María
IEEE Senior Member
Av. España 1680, Of. B.402
Valparaiso, Chile, 2390123.
Phone: +56 32 265 2612
Fax: +56 32 2797469
Email: matias DOT zanartu AT usm DOT cl
ResearcherID: I-3133-2012 – Scopus Author ID: 15838299100 – PubMed MyBibliography : link

Matías Zañartu is an Associate Professor in the Department of Electronic Engineering and the Head of the Biomedical Engineering research of the Advanced Center for Electrical and Electronic Engineering at Universidad Técnica Federico Santa María in Valparaiso, Chile. He received his Ph.D. and M.S. degrees in electrical and computer engineering from Purdue University, West Lafayette, USA, and his B.S. in acoustical engineering from Universidad Tecnológica Vicente Pérez Rosales, Santiago, Chile. His interests are centered on the development of digital signal processing, system modeling, and biomedical engineering tools that involve speech, audio, and acoustics. His recent research efforts have revolved around developing quantitative models that describe nonlinear effects in human speech production, and applying these physiological descriptions for the development of communication and clinical technologies.

Ping Zhou, Ph.D.
Professor, Department of Physical Medicine and Rehabilitation
University of Texas Health Science Center at Houston (UTHealth)
Phone: 713-797-7126 • Fax: 713-500-0710

Dr. Ping Zhou is a Professor in Physical Medicine and Rehabilitation at the University of Texas Health Science Center at Houston (UTHealth), TX, USA. He directs the NeuroMyo Engineering for Rehabilitation Laboratory of the TIRR Memorial Hermann Hospital, Houston, TX, USA, and the Neuromuscular Performance & Rehabilitation Laboratory of the Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China. His current research interests include biomedical signal (in particular, EMG) processing, motor unit pathophysiology after neurological injuries, noninvasive electrodiagnosis of neuromuscular diseases, advanced myoelectric control, and assistive devices for neurorehabilitation.


New Here? Sign Up

Looking for increased exposure in the field of biomedical engineering? EMBS offers journals, conferences and a community for biomedical engineers. Membership includes PULSE Magazine.